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We have recently described the use of chiral nickel complexes
to achieve catalytic asymmetric cross-couplings of organozinc,1,2

-silicon,3 and -boron4 reagents with racemic secondary alkyl
electrophiles, specifically, R-halocarbonyl compounds and allylic,
benzylic, and homobenzylic halides.5-7 To fully exploit the
tremendous potential of enantioselective cross-couplings, it is
necessary to expand the scope to other families of reaction
partners. With respect to electrophiles, propargylic halides are
attractive substrates, since an alkyne is an extremely versatile
functional group.8 In this report, we establish that, in the presence
of a chiral Ni/pybox complex, a wide array of racemic propar-
gylic halides can be cross-coupled with arylzinc reagents in a
stereoconvergent process (eq 1).

In previous investigations of nickel-catalyzed asymmetric
Negishi9 reactions, we observed that alkylzincs can be coupled
with R-bromoesters, 1-haloindanes, and allylic chlorides in good
yield and ee.1 Unfortunately, under the same conditions we were
not able to efficiently cross-couple arylzinc reagents with these
electrophiles. After extensive studies, we have now determined
that enantioselective Negishi reactions of diarylzincs can in fact
be achieved by NiCl2 · glyme/110 (both of which are commercially
available) in glyme at -20 °C, and that a new family of
electrophiles, propargylic halides, are suitable coupling partners
(eq 2).

We next turned our attention to exploring the scope of the
catalytic asymmetric arylation of propargylic halides. Few
diarylzinc reagents are commercially available, and diarylzincs
generated in situ by transmetalation of arylmagnesium or
aryllithium compounds did not furnish results comparable to eq
2, due in part to interference by the residual magnesium or

lithium salts.11 Since arylzinc halides also were not suitable
coupling partners under these conditions, we examined the use
of arylzinc reagents produced by treatment of readily available
arylboronic acids with diethylzinc.12 Although the published
procedure was not effective (eq 3), we were pleased to determine
that, by employing a modified protocol, the coupling of an
arylzinc with a propargylic halide can be achieved in very good
yield and ee (eq 4).

With straightforward access to a useful family of arylzinc
reagents, we examined the scope of this method for enantiose-
lective Negishi cross-coupling, focusing initially on TMS-
substituted propargylic bromides (Table 1), because of their ready
deprotection. We have established that asymmetric carbon-carbon
bond formation occurs smoothly in the presence of functional
groups such as acetals, ethers, esters, and olefins. Reactions of
hindered substrates proceed in modest yield (but high ee; e.g.,
entry 4).

Ni/1 can be applied to asymmetric Negishi reactions of
propargylic bromides that bear silyl protecting groups other than
TMS (eq 5 and eq 6). Thus, under the same conditions, Me2PhSi-
and TIPS-substituted electrophiles also undergo enantioselective
cross-coupling in good yield and ee.

Furthermore, without modification this stereoconvergent method
can be employed for asymmetric Negishi couplings of alkyl-
and aryl-substituted propargylic bromides (Table 2); the alkyl
substituent can range in size from methyl to t-butyl (entries 1-5).
Carbon-carbon bond formation proceeds in generally good yield
and enantioselectivity with an array of functionalized arylzinc
reagents, including compounds that contain heterocycles. An
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unactivated primary alkyl chloride is essentially inert to these
conditions (entry 5).13,14

Not only propargylic bromides, but also chlorides, undergo
cross-coupling under our standard conditions (eq 7). Although
the yield is somewhat lower, the ee is essentially identical to
that observed for the reaction of the corresponding bromide (see
eq 4).

Wright and Anderson recently described a series of novel
inhibitors of dihydrofolate reductase (from Cryptosporidium

hominis and Toxoplasma gondii, two parasitic protozoa), the
most active of which was pyrimidine 2 (Scheme 1).15 They
synthesized target compound 2 via a Sonogashira reaction of
alkyne 3, which was prepared in five steps (22% yield) from
arylacetic acid 4, by attachment and then removal of an Evans
chiral oxazolidinone.

As a demonstration of our new Negishi cross-coupling method,
we have applied it to a catalytic asymmetric synthesis of alkyne
3. Thus, on a gram-scale, the propargylic bromide derived from
commercially available 4-trimethylsilyl-3-butyn-2-ol was coupled
with arylzinc reagent 5 (generated from a commercially available
arylboronic acid) to furnish the key carbon-carbon bond in
93% ee.

In conclusion, we have developed a stereoconvergent method
for the catalytic asymmetric Negishi cross-coupling of racemic
secondary propargylic halides with arylzinc reagents. Neither
family of compounds has previously been shown to be a suitable
partner in such coupling processes. From a practical point of
view, it is noteworthy that the catalyst components (NiCl2 · glyme

Table 2. Asymmetric Cross-Couplings of Propargylic Bromides
with Arylzinc Reagentsc

a Yield of purified product. b Run using 6.0% NiCl2 · glyme, 7.8%
(-)-1, and 3.0 equiv of ArZnEt. c All data are the average of two
experiments.

Table 1. Asymmetric Cross-Couplings of TMS-Protected
Propargylic Bromides with Arylzinc Reagentsc

a Yield of purified product. b Run using 6.0% NiCl2 · glyme, 7.8%
(-)-1, and 3.0 equiv of ArZnEt. c All data are the average of two
experiments.
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and pybox ligand 1) are commercially available. Additional
studies of enantioselective nickel-catalyzed cross-coupling reac-
tions are underway.
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Scheme 1. Catalytic Asymmetric Synthesis of a Potent
Dihydrofolate Reductase Inhibitor (2)
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